D. G. Holmes——澳大利亚皇家墨尔本理工大学(RMIT)教授

创建时间:2023-03-02 16:54
浏览量:0

Holmes博士曾在莫纳什大学(Monash University)任教26年,在那里他建立了电力电子研究团队,指导研究生和工程师团队共同开展理论研究和项目研发工作。2010年,Holmes教授带领他的团队来到皇家墨尔本理工大学(RMIT),在那里他担任了智能能源系统“创新教授”(Innovation Professor)职务, 开展面向多种应用领域的电力电子研究,特别是智能电网和智能能源技术的研究。

Holmes教授对电力电子变换器的控制和运行有着浓厚的研究兴趣。他的研究工作为发展PWM理论做出了重要贡献。他是IEEE Fellow,在国际会议和学术期刊上发表了200多篇论文,并担任领域内所有主要IEEE汇刊(Transactions)的审稿人。他的研究领域包括智能电网技术和应用、电力电子变换器调制和控制、谐振变换器、多电平变换器等等。

Holmes博士深度参与了DSIM初步版本的内测,是DSIM软件的首批使用者之一。  

 

“研究并网逆变器的一个主要挑战是逆变器的长时间运行仿真。通常,这需要使用平均仿真模型,或只在一系列特定的瞬态事件点开展较短的仿真测试。这两种方法都不能全面反映系统特性,而且仿真耗时通常很长。与其他仿真软件相比,DSIM凭借其仿真速度快的优势很好地解决了这个问题。”

“A major challenge for investigating grid-connected inverters is to simulate the complete inverter operation over extended time periods. Conventionally, this is done either by using averaged simulation models or by a series of short-term “snapshot” simulations of specific transient events. Neither approach is satisfactory, and simulation times are often substantial. The benefit of DSIM to address this issue was its very fast simulation execution time compared to other simulation packages.”

 

首先,我们利用DSIM对电网逆变器进行了极其详细的建模,包括实验系统及其测量电路的所有物理元件。这种详细的建模可以避免使用简化或平均电路模型经常产生的误差。例如,物理系统中滤波器的时间常数将自动成为准确的数值,因为它们直接来自所建模的元件,而不是来自时间常数的计算。其次,几乎所有的实际变换器控制软件都被集成到一个C Block模块中。这一点很重要,因为这可以尽量减少对实际系统软件的任何修改,以避免可能的错误。最终,经过不断完善,实际系统中超过95%的控制软件被移植到仿真平台上,并可以准确运行。”

“To begin, a grid inverter was modeled in extreme detail, incorporating all physical components of the experimental system and its measurement circuits. Modeling at this level of detail avoids mistakes and errors that are often created using reduced or averaged circuit models. For example, filter time constants of the physical system are automatically correct since they derive directly from the represented components instead of from a time constant calculation. Next, almost all experimental converter controller software was implemented into a C block. It is important to minimize any editing away from the experimental system software to avoid approximation, interpretation, and possible errors. Eventually, with considerable effort, over 95% of the complete experimental system software was included in the simulation and executed without error.”

 

因此,仿真结果几乎可以完全精确地表征实际物理软硬件系统,因此使得实验验证之前可以用仿真来调试大部分控制软件算法,且精度可以得到保证。此外,即使是必须在硬件中解决的调试问题,也可以进行比使用传统方法更快、更灵活的方法进行研究。”

“Taken together, the resulting simulation is an almost exact representation of the actual physical hardware and software and executes at sufficient accuracy to allow much of the software algorithms to be commissioned using simulation before proceeding to experimental validation. Furthermore, even commissioning issues that must be resolved in hardware can be explored more quickly and flexibly than is the case using more conventional approaches.”

 

“在我们的系统中,DSIM的仿真速度达到了实时的1/15。也就是说,10秒的仿真将在大约150秒内完成。这已经足够快了,可以快速有效地推进研究工作,使得在笔记本电脑上进行这种详细程度的仿真成为可能。”

“DSIM executes this system in about 1/15th real-time. Or, in other words, 10 seconds of simulation time executes in about 150 seconds. This is sufficiently fast to allow useful investigations to proceed and thus makes simulating at this level of detail on a laptop computer viable.”

 

“该方法已用于并网逆变器的研究,并仿真了实验室级直流同步机组及其控制变换器的运行。目前,我们正在将这些仿真集成到混合微电网系统中,以研究机组/逆变器在十秒时间尺度上的振荡作用。据我所知,从未有过其他仿真软件可以使用笔记本电脑进行这种级别的仿真。”

“The approach has been used both for grid-connected inverter investigations, and to simulate the operation of a laboratory-level dc-synch machine set and its controlling converters. Currently, work is underway to integrate these simulations into a mixed micro-grid system, and then to investigate machine/inverter oscillatory interactions over several 10’s seconds. I know of no other simulation package that can manage this level of simulation using a laptop computer.”